A218672
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(n*x)^n/n! * exp(-n*x*A(n*x)).
Original entry on oeis.org
1, 1, 2, 9, 63, 659, 9833, 206961, 6133990, 256650268, 15213478000, 1281205909177, 153588353066135, 26245044813624300, 6399076697684238375, 2227912079081482302977, 1108302173165578509079527, 788171767077184315422131588, 801638519723021288783092512047
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 63*x^4 + 659*x^5 + 9833*x^6 +...
where
A(x) = 1 + x*A(x)*exp(-x*A(x)) + 2^2*x^2*A(2*x)^2/2!*exp(-2*x*A(2*x)) + 3^3*x^3*A(3*x)^3/3!*exp(-3*x*A(3*x)) + 4^4*x^4*A(4*x)^4/4!*exp(-4*x*A(4*x)) + 5^5*x^5*A(5*x)^5/5!*exp(-5*x*A(5*x)) +...
simplifies to a power series in x with integer coefficients.
-
a[n_] := Module[{A}, A[x_] = 1 + x; For[i = 1, i <= n, i++, A[x_] = Sum[If[k == 0, 1, k^k] x^k A[k x]^k/k! Exp[-k x A[k x] + x O[x]^i] // Normal, {k, 0, n}]]; Coefficient[ A[x], x, n]];
a /@ Range[0, 18] (* Jean-François Alcover, Sep 29 2019 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A,x,k*x)^k/k!*exp(-k*x*subst(A,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A218670
O.g.f.: Sum_{n>=0} n^n * (1+n*x)^n * x^n/n! * exp(-n*x*(1+n*x)).
Original entry on oeis.org
1, 1, 2, 7, 26, 116, 556, 2927, 16388, 97666, 612136, 4023878, 27579410, 196537134, 1451102836, 11074811191, 87160086800, 706055915318, 5876662642720, 50182337830986, 439036984440316, 3930618736372336, 35970734643745496, 336153100655220126, 3205000520319374116
Offset: 0
O.g.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 116*x^5 + 556*x^6 + 2927*x^7 +...
where
A(x) = 1 + (1+x)*x*exp(-x*(1+x)) + 2^2*(1+2*x)^2*x^2/2!*exp(-2*x*(1+2*x)) + 3^3*(1+3*x)^3*x^3/3!*exp(-3*x*(1+3*x)) + 4^4*(1+4*x)^4*x^4/4!*exp(-4*x*(1+4*x)) + 5^5*(1+5*x)^5*x^5/5!*exp(-5*x*(1+5*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);A=sum(k=0,n,k^k*(1+k*x)^k*x^k/k!*exp(-k*x*(1+k*x)+x*O(x^n)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A218667
O.g.f.: Sum_{n>=0} 1/(1-n*x)^n * x^n/n! * exp(-x/(1-n*x)).
Original entry on oeis.org
1, 0, 1, 1, 4, 13, 46, 181, 778, 3585, 17566, 91171, 499324, 2873839, 17317743, 108933098, 713481122, 4855161425, 34257461754, 250177938679, 1887886966690, 14699340919293, 117933068390123, 973776266303732, 8265721830953558, 72052688932613079, 644393453082317301
Offset: 0
O.g.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 13*x^5 + 46*x^6 + 181*x^7 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-2*x)^2/2!*exp(-x/(1-2*x)) + x^3/(1-3*x)^3/3!*exp(-x/(1-3*x)) + x^4/(1-4*x)^4/4!*exp(-x/(1-4*x)) + x^5/(1-5*x)^5/5!*exp(-x/(1-5*x)) + x^6/(1-6*x)^6/6!*exp(-x/(1-6*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k*X)^k*x^k/k!*exp(-X/(1-k*X)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
/* From a(n) = Sum_{k=1..n} Stirling2(n-k, k) * C(-1, k-1) */
{Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
{a(n)=if(n==0, 1, sum(k=1, n, Stirling2(n-k, k) * binomial(n-1, k-1)))}
for(n=0, 30, print1(a(n), ", "))
A218669
O.g.f.: Sum_{n>=0} 1/(1-n^3*x)^n * x^n/n! * exp(-x/(1-n^3*x)).
Original entry on oeis.org
1, 0, 1, 7, 97, 1561, 41136, 1551814, 72440460, 4281320257, 324623105584, 30086950057627, 3299720918091511, 428431079916572044, 65637957066642609845, 11659659637028895337265, 2367270866164121777222596, 546795407830461739380895161, 143176487805296033192642234802
Offset: 0
O.g.f.: A(x) = 1 + x^2 + 7*x^3 + 97*x^4 + 1561*x^5 + 41136*x^6 +...
where
A(x) = exp(-x) + x/(1-x)*exp(-x/(1-x)) + x^2/(1-8*x)^2/2!*exp(-x/(1-8*x)) + x^3/(1-27*x)^3/3!*exp(-x/(1-27*x)) + x^4/(1-64*x)^4/4!*exp(-x/(1-64*x)) + x^5/(1-125*x)^5/5!*exp(-x/(1-125*x)) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x,X=x+x*O(x^n));A=sum(k=0,n,1/(1-k^3*X)^k*x^k/k!*exp(-X/(1-k^3*X)));polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A218673
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(2*n)/n! * exp(-n*x*A(n*x)^2).
Original entry on oeis.org
1, 1, 3, 20, 209, 3173, 67292, 1970761, 79764057, 4490097388, 354111363537, 39360693851404, 6193012446752244, 1383433132321835172, 439684769985895688173, 199116777197880585373014, 128631139424158036273736167, 118640007280899188486618513612
Offset: 0
O.g.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 209*x^4 + 3173*x^5 + 67292*x^6 +...
where
A(x) = 1 + x*A(x)^2*exp(-x*A(x)^2) + 2^2*x^2*A(2*x)^4/2!*exp(-2*x*A(2*x)^2) + 3^3*x^3*A(3*x)^6/3!*exp(-3*x*A(3*x)^2) + 4^4*x^4*A(4*x)^8/4!*exp(-4*x*A(4*x)^2) + 5^5*x^5*A(5*x)^10/5!*exp(-5*x*A(5*x)^2) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^2,x,k*x)^k/k!*exp(-k*x*subst(A^2,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A218674
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(3*n)/n! * exp(-n*x*A(n*x)^3).
Original entry on oeis.org
1, 1, 4, 34, 455, 8710, 230077, 8285224, 407456797, 27587687551, 2596034329278, 342275007167359, 63606742005546232, 16730509857101195808, 6246818082857455197662, 3317816101992338134691233, 2510420393373091580780786808, 2709148467943025007607468405672
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 34*x^3 + 455*x^4 + 8710*x^5 + 230077*x^6 +...
where
A(x) = 1 + x*A(x)^3*exp(-x*A(x)^3) + 2^2*x^2*A(2*x)^6/2!*exp(-2*x*A(2*x)^3) + 3^3*x^3*A(3*x)^9/3!*exp(-3*x*A(3*x)^3) + 4^4*x^4*A(4*x)^12/4!*exp(-4*x*A(4*x)^3) + 5^5*x^5*A(5*x)^15/5!*exp(-5*x*A(5*x)^3) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^3,x,k*x)^k/k!*exp(-k*x*subst(A^3,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A218675
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(4*n)/n! * exp(-n*x*A(n*x)^4).
Original entry on oeis.org
1, 1, 5, 51, 817, 18562, 576687, 24203258, 1375038677, 106708683355, 11435867474152, 1708844338589752, 358640659116617571, 106261016900832212139, 44607231638918264608274, 26598477338494285370797703, 22569718290467849884279856477
Offset: 0
O.g.f.: A(x) = 1 + x + 5*x^2 + 51*x^3 + 817*x^4 + 18562*x^5 + 576687*x^6 +...
where
A(x) = 1 + x*A(x)^4*exp(-x*A(x)^4) + 2^2*x^2*A(2*x)^8/2!*exp(-2*x*A(2*x)^4) + 3^3*x^3*A(3*x)^12/3!*exp(-3*x*A(3*x)^4) + 4^4*x^4*A(4*x)^16/4!*exp(-4*x*A(4*x)^4) + 5^5*x^5*A(5*x)^20/5!*exp(-5*x*A(5*x)^4) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^4,x,k*x)^k/k!*exp(-k*x*subst(A^4,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A218676
O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(5*n)/n! * exp(-n*x*A(n*x)^5).
Original entry on oeis.org
1, 1, 6, 71, 1311, 34146, 1207717, 57298282, 3653975784, 316252925221, 37596625187796, 6206102367103899, 1434418185304457039, 466995106832397752352, 215051811411620578152401, 140491107719613466192347681, 130481943378389095603359529403
Offset: 0
O.g.f.: A(x) = 1 + x + 6*x^2 + 71*x^3 + 1311*x^4 + 34146*x^5 + 1207717*x^6 +...
where
A(x) = 1 + x*A(x)^5*exp(-x*A(x)^5) + 2^2*x^2*A(2*x)^10/2!*exp(-2*x*A(2*x)^5) + 3^3*x^3*A(3*x)^15/3!*exp(-3*x*A(3*x)^5) + 4^4*x^4*A(4*x)^20/4!*exp(-4*x*A(4*x)^5) + 5^5*x^5*A(5*x)^25/5!*exp(-5*x*A(5*x)^5) +...
simplifies to a power series in x with integer coefficients.
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^5,x,k*x)^k/k!*exp(-k*x*subst(A^5,x,k*x)+x*O(x^n))));polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
Showing 1-8 of 8 results.
Comments