A218675 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(4*n)/n! * exp(-n*x*A(n*x)^4).
1, 1, 5, 51, 817, 18562, 576687, 24203258, 1375038677, 106708683355, 11435867474152, 1708844338589752, 358640659116617571, 106261016900832212139, 44607231638918264608274, 26598477338494285370797703, 22569718290467849884279856477
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x + 5*x^2 + 51*x^3 + 817*x^4 + 18562*x^5 + 576687*x^6 +... where A(x) = 1 + x*A(x)^4*exp(-x*A(x)^4) + 2^2*x^2*A(2*x)^8/2!*exp(-2*x*A(2*x)^4) + 3^3*x^3*A(3*x)^12/3!*exp(-3*x*A(3*x)^4) + 4^4*x^4*A(4*x)^16/4!*exp(-4*x*A(4*x)^4) + 5^5*x^5*A(5*x)^20/5!*exp(-5*x*A(5*x)^4) +... simplifies to a power series in x with integer coefficients.
Crossrefs
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^4,x,k*x)^k/k!*exp(-k*x*subst(A^4,x,k*x)+x*O(x^n))));polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
Comments