cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218676 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n*A(n*x)^(5*n)/n! * exp(-n*x*A(n*x)^5).

Original entry on oeis.org

1, 1, 6, 71, 1311, 34146, 1207717, 57298282, 3653975784, 316252925221, 37596625187796, 6206102367103899, 1434418185304457039, 466995106832397752352, 215051811411620578152401, 140491107719613466192347681, 130481943378389095603359529403
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2012

Keywords

Comments

Compare to the LambertW identity:
Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).

Examples

			O.g.f.: A(x) = 1 + x + 6*x^2 + 71*x^3 + 1311*x^4 + 34146*x^5 + 1207717*x^6 +...
where
A(x) = 1 + x*A(x)^5*exp(-x*A(x)^5) + 2^2*x^2*A(2*x)^10/2!*exp(-2*x*A(2*x)^5) + 3^3*x^3*A(3*x)^15/3!*exp(-3*x*A(3*x)^5) + 4^4*x^4*A(4*x)^20/4!*exp(-4*x*A(4*x)^5) + 5^5*x^5*A(5*x)^25/5!*exp(-5*x*A(5*x)^5) +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,k^k*x^k*subst(A^5,x,k*x)^k/k!*exp(-k*x*subst(A^5,x,k*x)+x*O(x^n))));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))