A218699 Number of partitions of n in which any two distinct parts differ by at least 4.
1, 1, 2, 2, 3, 2, 5, 4, 8, 8, 12, 12, 19, 18, 24, 26, 36, 36, 48, 50, 70, 71, 92, 96, 129, 133, 168, 177, 225, 233, 294, 307, 382, 401, 488, 518, 635, 668, 803, 855, 1027, 1089, 1298, 1381, 1638, 1745, 2047, 2184, 2569, 2734, 3181, 3404, 3953, 4213, 4863, 5203
Offset: 0
Keywords
Examples
a(5) = 2: [1,1,1,1,1], [5]. a(6) = 5: [1,1,1,1,1,1], [2,2,2], [3,3], [1,5], [6]. a(7) = 4: [1,1,1,1,1,1,1], [1,1,5], [1,6], [7]. a(8) = 8: [1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [1,1,1,5], [1,1,6], [2,6], [1,7], [8].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-4), j=1..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..70);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i j, i - k, k], {j, 1, n/i}]]]; a[n_] := b[n, n, 4]; a /@ Range[0, 70] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
Formula
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(4*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-4*x)) dx = -0.9030055506558938921393786530232872470622617736... - Vaclav Kotesovec, Jan 28 2022
Comments