A218705 Number of partitions of n in which any two distinct parts differ by at least 10.
1, 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 7, 4, 8, 9, 13, 11, 18, 16, 23, 22, 27, 27, 36, 35, 41, 42, 51, 48, 61, 57, 69, 65, 80, 81, 98, 93, 115, 112, 144, 136, 170, 164, 202, 204, 244, 242, 296, 290, 353, 350, 415, 412, 493, 494, 576, 580, 671, 673, 794, 786, 903
Offset: 0
Keywords
Examples
a(10) = 4: [1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10]. a(11) = 2: [1,1,1,1,1,1,1,1,1,1,1], [11]. a(12) = 7: [1,1,1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3], [4,4,4], [6,6], [1,11], [12].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1) +add(b(n-i*j, i-10), j=1..n/i))) end: a:= n-> b(n, n): seq(a(n), n=0..70);
Formula
G.f.: 1 + Sum_{j>=1} x^j/(1-x^j) * Product_{i=1..j-1} (1+x^(10*i)/(1-x^i)).
log(a(n)) ~ sqrt((2*Pi^2/3 + 4*c)*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-10*x)) dx = -1.2055372531240537414216314471404302128615809819... - Vaclav Kotesovec, Jan 28 2022
Comments