A218713 a(n) is smallest number such that a(n)^2 + 1 is divisible by 37^n.
0, 6, 117, 9466, 800982, 6423465, 756360062, 24900904028, 1019349744435, 15069267560119, 794839706330581, 71333925879937154, 2419512779032508628, 116073623326088126430, 359642847542169431827, 144552623583462302226851, 3523356323886506075746572
Offset: 0
Keywords
Examples
a(3) = 9466 because 9466^2+1 = 29 * 37 ^ 3 * 61.
Programs
-
Mathematica
b=6;n37=37;jo=Join[{0,b},Table[n37=37*n37;b=PowerMod[b,37,n37];b=Min[b,n37-b],{99}]]