A218714 a(n) is smallest number such that a(n)^2 + 1 is divisible by 41^n.
0, 9, 378, 11389, 1251967, 46464143, 2363588163, 92615568742, 287369842623, 112076323050317, 2403749863808044, 56094387104417648, 1156752450536914530, 43970228150195457632, 10132163897314954464899, 503212117431217218892992, 19164391897329672149556204
Offset: 0
Keywords
Examples
a(3) = 11389 because 11389^2+1 = 2 * 41 ^ 3 * 941.
Programs
-
Mathematica
b=9;n41=41;jo=Join[{0,b},Table[n41=41*n41;b=PowerMod[b,41,n41];b=Min[b,n41-b],{99}]]