A218718
a(n) is smallest number such that a(n)^2 + 1 is divisible by 89^n.
Original entry on oeis.org
0, 34, 3861, 344464, 20099637, 2153335831, 102666405913, 4867146503697, 923990886302412, 50251663587824641, 5655954122907587985, 909925832091926912414, 85120439454684773642745, 2631773999763198769695986, 41332517834853462204330752
Offset: 0
a(3) = 344464 because 344464^2+1 = 37 * 89 ^ 3 * 4549.
Cf.
A002522,
A049532,
A034939,
A218709,
A218710,
A218712,
A218713,
A218714,
A218715,
A218716,
A218717.
-
b=34;n89=89;jo=Join[{0,b},Table[n89=89*n89;b=PowerMod[b, 89,n89];b=Min[b,n89-b],{99}]]
A218719
a(n) is smallest number such that a(n)^2 + 1 is divisible by 97^n.
Original entry on oeis.org
0, 22, 4052, 107551, 22709274, 331407850, 197177418061, 26457926739667, 2369608176604944, 76004727767164666, 25163629663367816827, 1965881512952938486496, 191165497320828772935835, 21700278688179406782082106, 560121950820639295011033922
Offset: 0
a(3) = 107551 because 107551^2+1 = 2 * 97 ^ 3 * 6337.
Cf.
A002522,
A049532,
A034939,
A218709,
A218710,
A218712,
A218713,
A218714,
A218715,
A218716,
A218717,
A218718.
-
b=22;n97=97;jo=Join[{0,b},Table[n97=97*n97;b=PowerMod[b, 97,n97];b=Min[b,n97-b],{99}]]
A218720
a(n) is smallest number such that a(n)^2 + 1 is divisible by 101^n.
Original entry on oeis.org
0, 10, 515, 296344, 35764191, 1108900220, 316411915250, 47023298541694, 3156215819652023, 310872228812491206, 28124944860980892220, 3783840171259076226254, 208193145695151069244665, 19364218657938636320485082, 663491749602035014400202724
Offset: 0
a(3) = 296344 because 296344^2+1 = 101 ^ 3 * 85237.
Cf.
A002522,
A049532,
A034939,
A218709,
A218710,
A218712,
A218713,
A218714,
A218715,
A218716,
A218717,
A218718,
A218719.
-
b=10;n101=101;jo=Join[{0,b},Table[n101=101*n101;b=PowerMod[b, 101,n101];b=Min[b,n101-b],{99}]]
Showing 1-3 of 3 results.