A218731 a(n) = (28^n - 1)/27.
0, 1, 29, 813, 22765, 637421, 17847789, 499738093, 13992666605, 391794664941, 10970250618349, 307167017313773, 8600676484785645, 240818941573998061, 6742930364071945709, 188802050194014479853, 5286457405432405435885, 148020807352107352204781, 4144582605859005861733869
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (29,-28).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009972.
Programs
-
Magma
[n le 2 select n-1 else 29*Self(n-1)-28*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{29, -28}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218731(n):=(28^n-1)/27$ makelist(A218731(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
A218731(n)=28^n\27
Formula
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-28*x)).
a(n) = floor(28^n/27).
a(n) = 29*a(n-1) - 28*a(n-2). (End)
E.g.f.: exp(x)*(exp(27*x) - 1)/27. - Elmo R. Oliveira, Aug 29 2024
Comments