A218751 a(n) = (48^n - 1)/47.
0, 1, 49, 2353, 112945, 5421361, 260225329, 12490815793, 599559158065, 28778839587121, 1381384300181809, 66306446408726833, 3182709427618887985, 152770052525706623281, 7332962521233917917489, 351982201019228060039473, 16895145648922946881894705, 810966991148301450330945841
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..600
- Index entries related to partial sums.
- Index entries for linear recurrences with constant coefficients, signature (49,-48).
Crossrefs
Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723.
Cf. A009992.
Programs
-
Magma
[n le 2 select n-1 else 49*Self(n-1)-48*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2012
-
Mathematica
LinearRecurrence[{49, -48}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)
-
Maxima
A218751(n):=floor((48^n-1)/47)$ makelist(A218751(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A218751(n)=48^n\47
Formula
a(n) = floor(48^n/47).
From Vincenzo Librandi, Nov 08 2012: (Start)
G.f.: x/((1-x)*(1-48*x)).
a(n) = 49*a(n-1) - 48*a(n-2) with a(0)=0, a(1)=1.
a(n) = 48*a(n-1) + 1 with a(0)=0. (End)
E.g.f.: exp(x)*(exp(47*x) - 1)/47. - Elmo R. Oliveira, Aug 29 2024
Comments