A219543 Denominators of Bernoulli numbers which are congruent to 3 (mod 9).
30, 66, 138, 282, 354, 498, 642, 1002, 1074, 1362, 1434, 1578, 2082, 2154, 2298, 2478, 2658, 2730, 2802, 2874, 3018, 3378, 3486, 3522, 3882, 3954, 4314, 4494, 4962, 5034, 5178, 5322, 5898, 6114, 7122, 7338, 7518, 7554, 7590, 7698, 7842, 7914, 8202, 8634, 8922
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
listLength = 50; n0 = 10*listLength; Clear[f]; f[n_] := f[n] = Union[Reap[ For[k = 4, k <= n, k = k+2, b = Denominator[BernoulliB[k]]; If[Mod[b, 36] == 30, Sow[b]]]][[2, 1]]][[1 ;; listLength]]; f[n0]; f[n = 2 n0]; While[ Print["n = ", n]; f[n] != f[n/2], n = 2 n]; A219543 = f[n] (* Jean-François Alcover, Jan 11 2016 *)
-
PARI
is(n)=if(n%36-30, 0, my(f=factor(n)); if(vecmax(f[, 2])>1, return(0)); fordiv(lcm(apply(k->k-1, f[, 1])), k, if(isprime(k+1) && n%(k+1), return(0))); 1) \\ Charles R Greathouse IV, Nov 26 2012
Comments