A218757 Triangle read by rows: T(n,k) is the number of length-n ascent sequences without flat steps, containing k zeros.
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 0, 5, 9, 2, 0, 0, 0, 16, 32, 13, 0, 0, 0, 0, 61, 132, 72, 6, 0, 0, 0, 0, 271, 623, 409, 69, 0, 0, 0, 0, 0, 1372, 3314, 2480, 605, 24, 0, 0, 0, 0, 0, 7795, 19628, 16222, 5016, 432, 0, 0, 0, 0, 0, 0, 49093, 128126, 114594, 41955, 5498, 120, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle starts: 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 2, 3, 0, 0, 0, 5, 9, 2, 0, 0, 0, 16, 32, 13, 0, 0, 0, 0, 61, 132, 72, 6, 0, 0, 0, 0, 271, 623, 409, 69, 0, 0, 0, 0, 0, 1372, 3314, 2480, 605, 24, 0, 0, 0, 0, 0, 7795, 19628, 16222, 5016, 432, 0, 0, 0, 0, 0, 0, 49093, 128126, 114594, 41955, 5498, 120, 0, 0, 0, 0, 0, 0, 339386, 914005, 872336, 363123, 62626, 3120, 0, 0, 0, 0, 0, 0, ... The A138265(5) = 16 length-5 ascent sequences without flat steps are (dots for zeros): [ #] ascent-seq. #zeros [ 1] [ . 1 . 1 . ] 3 [ 2] [ . 1 . 1 2 ] 2 [ 3] [ . 1 . 1 3 ] 2 [ 4] [ . 1 . 2 . ] 3 [ 5] [ . 1 . 2 1 ] 2 [ 6] [ . 1 . 2 3 ] 2 [ 7] [ . 1 2 . 1 ] 2 [ 8] [ . 1 2 . 2 ] 2 [ 9] [ . 1 2 . 3 ] 2 [10] [ . 1 2 1 . ] 2 [11] [ . 1 2 1 2 ] 1 [12] [ . 1 2 1 3 ] 1 [13] [ . 1 2 3 . ] 2 [14] [ . 1 2 3 1 ] 1 [15] [ . 1 2 3 2 ] 1 [16] [ . 1 2 3 4 ] 1 There are 5 sequences with 1 zero, 9 with two zeros and 2 with three zeros, so the row for n==5 is 0, 5, 9, 2, 0, 0.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..65, flattened (rows 0..15 from Joerg Arndt)
Comments