cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A194530 Number of unlabeled rigid interval posets with n non-maximal and 2 maximal elements.

Original entry on oeis.org

0, 1, 3, 9, 32, 132, 623, 3314, 19628, 128126, 914005, 7074517, 59050739, 528741491, 5055414317, 51406084221, 553946196892, 6305737560455, 75610546284387, 952559077043183, 12579235034203780, 173759983171005721, 2505751777457313815, 37657189917162605826
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2011

Keywords

Crossrefs

2nd column of A193344, Column k=2 of A218757.
Cf. A138265.

Programs

  • Maple
    w:= proc(t) option remember;
          `if`(t=0, 1, expand(convert(series(series(z +z*(subs(
               z=z+y+y*z, w(t-1)) -w(t-1)), z, t+1), y, t+1), polynom)))
        end:
    a:= n-> coeff(coeff(w(2+n), z, 2), y, n):
    seq(a(n), n=0..50);
  • Mathematica
    w[t_] := w[t] = If[t == 0, 1, Expand[Normal[Series[Series[z+z*((w[t-1] /. z -> z+y+y*z)-w[t-1]), {z, 0, t+1}], {y, 0, t+1}]]]]; a[n_] := a[n] = Coefficient[Coefficient[w[2+n], z, 2], y, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

a(n) = [ y^n z^2 ] W(y,z); W(y,z) = z + z*(W(y,y+z+yz) - W(y,z)).
From Peter Bala, Aug 21 2023: (Start)
Conjectural g.f.:
1) A(x) = Sum_{n >= 0} n*(Product_{i = 1..n} 1 - 1/(1+x)^i).
2) A(x) = (1/2)*Sum_{n >= 0} n*(n+1)/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A138265. (End)
Showing 1-1 of 1 results.