A218782 A014486-codes for the compact representation of Beanstalk-tree, growing by two natural numbers at time, starting from the tree of one internal node (1) and two leaves (3 and 2), with the larger numbers coming to the left hand side.
2, 12, 52, 216, 872, 3496, 14024, 56200, 224904, 899720, 3599496, 14398600, 57599112, 230398088, 921606280, 3686471816, 14745933960, 58983782536, 235935438984, 943742064776, 3774970665096, 15099883493512, 60399541098632, 241598171519112, 966392760309896
Offset: 1
Keywords
Examples
Illustration how the growing beanstalk-tree produces the first four terms of this sequence. In this "compact" variant, each successive pair of numbers ((2,3), (4,5), (6,7), etc.) adds a new bud (\/) to the beanstalk, with the lesser numbers coming to the right hand side: ---------- ..3...2... ...\./.... Coded by A014486(A218783(1)) = A014486(1) = 2 (binary 10). ....1..... ---------- 5...4..... .\./...... ..3...2... ...\./.... Coded by A014486(A218783(2)) = A014486(3) = 12 (bin. 1100). ....1..... ---------- ..7...6... ...\./.... 5...4..... .\./...... ..3...2... ...\./.... Coded by A014486(A218783(3)) = A014486(7) = 52 (110100). ....1..... ---------- 9...8..... .\./...... ..7...6... ...\./.... 5...4..... .\./...... ..3...2... ...\./.... Coded by A014486(A218783(4)) = A014486(18) = 216 (11011000). ....1..... ---------- Thus the first four terms of this sequence are 2, 12, 52 and 216.
Links
- A. Karttunen, Table of n, a(n) for n = 1..256
- A. Karttunen, Terms a(1)-a(4096) drawn as binary strings, in Wolframesque fashion.
Comments