cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A218824 O.g.f.: A(x) = Sum_{n>=0} n^n * x^n/n! * P(n*x)^n * exp(-n*x*P(n*x)), where P(x) is the partition function (A000041).

Original entry on oeis.org

1, 1, 2, 9, 57, 421, 3593, 34557, 366832, 4251094, 53238166, 714702779, 10221402872, 154913725486, 2477047085038, 41629752595369, 732956458329580, 13480858878123068, 258362762534442843, 5148079352377053578, 106437899659055825010, 2279307634231962670724
Offset: 0

Views

Author

Paul D. Hanna, Nov 06 2012

Keywords

Comments

Compare the o.g.f. to the LambertW identity:
Sum_{n>=0} n^n * x^n/n! * G(x)^n * exp(-n*x*G(x)) = 1/(1-x*G(x)).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 57*x^4 + 421*x^5 + 3593*x^6 +...
such that
A(x) = 1 + x*P(x)*exp(-x*P(x)) + 2^2*x^2*P(2*x)^2*exp(-2*x*P(2*x))/2! + 3^3*x^3*P(3*x)^3*exp(-3*x*P(3*x))/3! + 4^4*x^4*P(4*x)^4*exp(-4*x*P(4*x))/4! + 5^5*x^5*P(5*x)^5*exp(-5*x*P(5*x))/5! +...
where the partition function P(x) = Product_{n>=1} 1/(1-x^n) begins:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 +...
		

Crossrefs

Cf. A218670.

Programs

  • PARI
    {a(n)=local(A=1+x);A=sum(k=0,n,k^k/eta(k*x+x*O(x^n))^k*x^k/k!*exp(-k*x/eta(k*x+x*O(x^n))));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))