A218831 a(n) is the least r > 1 for which the interval (r*n, r*(n+1)) contains no prime, or a(n)=0 if no such r exists.
0, 0, 0, 2, 0, 4, 2, 3, 0, 2, 3, 2, 2, 0, 6, 2, 2, 3, 2, 6, 3, 2, 4, 2, 2, 7, 2, 2, 4, 3, 2, 2, 4, 2, 4, 4, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 2
Offset: 1
Keywords
Links
- Peter J. C. Moses., Table of n, a(n) for n = 1..20000
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011.
- M. El Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1:13 (2006), pp. 617-621.
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
- A. Loo, On the primes in the interval [3n,4n], International Journal of Contemporary Mathematical Sciences, volume 6, number 38, pages 1871-1882, 2011.
- J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177-181.
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
- Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
- L. Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x). II, Math. Comp. 30 (1975) 337-360.
Programs
-
Mathematica
rmax = 100; a[n_] := Catch[ For[r = 2, r <= rmax, r++, If[PrimePi[r*n] == PrimePi[r*(n + 1)], Throw[r], If[r == rmax, Throw[0]]]]]; Table[ a[n] , {n, 1, 87}] (* Jean-François Alcover, Dec 13 2012 *)
Formula
a(n) = 0 <=> A220315(k) = n for some k. - Jonathan Sondow, Aug 04 2017
Comments