A218850 a(n) is the least r > 1 for which the interval (r*(2*n-1), r*(2*n+1)) contains no prime, or 0 if no such r exists.
0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 5, 0, 2, 4, 2, 0, 4, 2, 3, 0, 0, 2, 3, 6, 0, 4, 0, 2, 2, 2, 0, 0, 3, 0, 2, 0, 7, 0, 2, 3, 16, 0, 2, 0, 2, 2, 3, 0, 3, 2, 2, 5, 2, 2, 8, 3, 0, 2, 0, 2, 2, 0, 7, 2, 4, 4, 0, 3, 0
Offset: 1
Keywords
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..20000
- J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177-181.
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- O. Ramaré and Y. Saouter, Short effective intervals containing primes, J. Number Theory, 98(2003), 10-33.
- L. Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x). II, Math. Comp. 30 (1975) 337-360.
- Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012), Article 12.5.4.
- Vladimir Shevelev, Charles R. Greathouse IV, and Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785 [math.NT], 2012.
Comments