A218852 Numbers n for which sigma(n) = sigma(x) + sigma(y) + sigma(z), where n = x + y + z, with x, y, z all positive.
5, 7, 10, 13, 14, 15, 16, 19, 20, 21, 25, 26, 27, 28, 31, 32, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1
Keywords
Examples
sigma(1) + sigma(1) + sigma(3) = sigma(5) = 6. sigma(2) + sigma(2) + sigma(6) = sigma(10) = 18. *sigma(2) + sigma(8) + sigma(30) = sigma(40) = 90. *sigma(6) + sigma(10) + sigma(24) = sigma(40) = 90. sigma(8) + sigma(8) + sigma(24) = sigma(40) = 90. Hence, 5, 10 and 40 are in the sequence. Note that (*) means that (x+y+z) divides xyz as well.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..400
Programs
-
Maple
isA218852 := proc(n) local x,y,z ; for x from 1 to n-2 do for y from x to n-x-1 do z := n-x-y ; if numtheory[sigma](x)+numtheory[sigma](y)+numtheory[sigma](z) = numtheory[sigma](n) then return true; end if; end do: end do: return false; end proc: for n from 3 to 120 do if isA218852(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Nov 07 2012
-
Mathematica
xyzQ[n_]:=Module[{ips=Total/@(DivisorSigma[1,#]&/@IntegerPartitions[n,{3}])},Total[Boole[DivisorSigma[1,n]==#&/@ips]]>0]; Select[Range[ 100], xyzQ] (* Harvey P. Dale, Jun 22 2020 *)
Comments