A218853 Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in increasing powers.
1, -1, 2, 1, -6, 6, 0, 1, -3, 2, -1, 0, 30, -60, 30, 0, -1, 0, 10, -15, 6, 1, 0, -21, 0, 105, -126, 42, 0, 1, 0, -7, 0, 21, -21, 6, -1, 0, 20, 0, -70, 0, 140, -120, 30, 0, -3, 0, 20, 0, -42, 0, 60, -45, 10, 5, 0, -99, 0, 330, 0, -462, 0, 495, -330, 66, 0, 5, 0
Offset: 0
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A213615.
Programs
-
Maple
A218853_row := n -> seq(coeff(numer(bernoulli(n,x)),x,j),j=0..n): seq(A218853_row(n), n = 0..10); # Peter Luschny, Nov 22 2015
-
Mathematica
Flatten[Table[ p = CoefficientList[BernoulliB[n, x], x]; (LCM @@ Denominator[p])*p, {n, 0, 10}]]
Comments