A218870 Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number <= k (1 <= k <= n).
2, 2, 2, 4, 6, 6, 6, 10, 12, 12, 12, 24, 28, 30, 30, 20, 40, 48, 52, 54, 54, 40, 92, 112, 120, 124, 126, 126, 74, 174, 210, 226, 234, 238, 240, 240, 148, 362, 438, 474, 490, 498, 502, 504, 504, 286, 700, 860, 928, 960, 976, 984, 988, 990, 990, 572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046
Offset: 1
Examples
Triangle begins: [2] [2, 2] [4, 6, 6] [6, 10, 12, 12] [12, 24, 28, 30, 30] [20, 40, 48, 52, 54, 54] [40, 92, 112, 120, 124, 126, 126] [74, 174, 210, 226, 234, 238, 240, 240] [148, 362, 438, 474, 490, 498, 502, 504, 504] [286, 700, 860, 928, 960, 976, 984, 988, 990, 990] [572, 1448, 1776, 1916, 1984, 2016, 2032, 2040, 2044, 2046, 2046] ...
Links
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- N. J. A. Sloane, Rows 1 through 36
- Index entries for sequences related to curling numbers
Comments