A218876 Triangle read by rows: T(n,k) (1 <= k <= n) = number of non-robust primitive binary sequences of length n and curling number k.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: [0], [0, 0], [0, 0, 0], [0, 0, 0, 0], [2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [4, 0, 0, 0, 0, 0, 0], [2, 2, 0, 0, 0, 0, 0, 0], [6, 0, 0, 0, 0, 0, 0, 0, 0], [6, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0], [10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ...
Links
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- N. J. A. Sloane, On Curling Numbers of Integer Sequences, Combinatorics on Words Conference, Fields Institute, Toronto, April 22, 2013.
- N. J. A. Sloane, First 36 rows of table
- Index entries for sequences related to curling numbers