A218913 Number of distinct orders of subgroups of the symmetric group.
1, 1, 2, 4, 8, 13, 21, 31, 49, 74, 113, 139, 216, 268
Offset: 0
Links
- L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013 and J. Int. Seq. 16 (2013) #13.5.8
- Liam Naughton, CountingSubgroups.g
- Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library,
Programs
-
GAP
Size(DuplicateFreeList(List(ConjugacyClassesSubgroups(G), x-> Size(Representative (x)))));
-
Sage
def A218913(n): G = SymmetricGroup(n) subgroups = G.conjugacy_classes_subgroups() return len(set(subG.cardinality() for subG in subgroups)) # Peter Luschny, Apr 21 2016