A218984 Power floor sequence of 2+sqrt(6).
4, 17, 75, 333, 1481, 6589, 29317, 130445, 580413, 2582541, 11490989, 51129037, 227498125, 1012250573, 4503998541, 20040495309, 89169978317, 396760903885, 1765383572173, 7855056096461, 34950991530189, 155514078313677, 691958296315085, 3078861341887693
Offset: 0
Examples
a(0) = [r] = 4, where r = 2+sqrt(6); a(1) = [4*r] = 17; a(2) = [17*r] = 75.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..250
- Index entries for linear recurrences with constant coefficients, signature (5,-2,-2).
Programs
-
Mathematica
x = 2 + Sqrt[6]; z = 30; (* z = # terms in sequences *) f[x_] := Floor[x]; c[x_] := Ceiling[x]; p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; p1[n_] := f[x*p1[n - 1]] p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] p4[n_] := c[x*p4[n - 1]] t1 = Table[p1[n], {n, 0, z}] (* A218984 *) t2 = Table[p2[n], {n, 0, z}] (* A090017 *) t3 = Table[p3[n], {n, 0, z}] (* A123347 *) t4 = Table[p4[n], {n, 0, z}] (* A218985 *)
-
PARI
Vec((4 - 3*x - 2*x^2) / ((1 - x)*(1 - 4*x - 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
Formula
a(n) = [x*a(n-1)], where x=2+sqrt(6), a(0) = [x].
a(n) = 5*a(n-1) - 2*a(n-2) - 2*a(n-3).
G.f.: (4 - 3*x - 2*x^2)/(1 - 5*x + 2*x^2 + 2*x^3).
a(n) = (1/30)*(6 + (57-23*sqrt(6))*(2-sqrt(6))^n + (2+sqrt(6))^n*(57+23*sqrt(6))). - Colin Barker, Nov 13 2017
Comments