A218987 Power ceiling sequence of 2+sqrt(7).
5, 24, 112, 521, 2421, 11248, 52256, 242769, 1127845, 5239688, 24342288, 113088217, 525379733, 2440783584, 11339273536, 52679444897, 244735600197, 1136980735480, 5282129742512, 24539461176489, 114004233933493, 529635319263440, 2460553978854240
Offset: 0
Examples
a(0) = ceiling(r) = 5, where r = 2+sqrt(7); a(1) = ceiling(5*r) = 24; a(2) = ceiling(24*r) = 112.
Links
- Clark Kimberling, Table of n, a(n) for n = 0..250
- Index entries for linear recurrences with constant coefficients, signature (5,-1,-3).
Programs
-
Mathematica
(See A218986.)
-
PARI
a(n) = round((-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84) \\ Colin Barker, Sep 02 2016
-
PARI
Vec((5-x-3*x^2)/((1-x)*(1-4*x-3*x^2)) + O(x^30)) \\ Colin Barker, Sep 02 2016
Formula
a(n) = ceiling(x*a(n-1)), where x=2+sqrt(7), a(0) = ceiling(x).
a(n) = 5*a(n-1) - a(n-2) - 3*a(n-3).
G.f.: (5 - x - 3*x^2)/(1 - 5*x + x^2 + 3*x^3).
a(n) = (-14+(217-83*sqrt(7))*(2-sqrt(7))^n+(2+sqrt(7))^n*(217+83*sqrt(7)))/84. - Colin Barker, Sep 02 2016
E.g.f.: exp(x)*(exp(x)*(217*cosh(sqrt(7)*x) + 83*sqrt(7)*sinh(sqrt(7)*x)) - 7)/42. - Stefano Spezia, Aug 05 2025
Comments