A219012 Numerators in a product expansion for sqrt(3).
4, 724, 198924689265124, 311489521560905211009923410118036749078665998068304623331823899816643124
Offset: 0
Examples
The first three terms of the product give 70 correct decimal places of sqrt(3): (1 + 2*4/11)*(1 + 2*724/523451)*(1 + 2*198924689265124/39571031999225940638473470251) = 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81038 06280 55806 97945 19330 (0...).
Links
- Amiram Eldar, Table of n, a(n) for n = 0..4
Programs
-
Mathematica
RecurrenceTable[{a[n+1] == a[n]^5 - 5*a[n]^3 + 5*a[n], a[0] == 4}, a, {n, 0, 3}] (* Amiram Eldar, Jul 20 2025 *)
Formula
Let tau = 2 + sqrt(3). Then a(n) = tau^(5^n) + 1/tau^(5^n).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 4.
a(n) = 2*T(5^n,2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Mar 29 2022
Let b(n) = a(n) - 4. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 06 2022
Comments