A219014 Numerators in a product expansion for sqrt(2).
6, 6726, 13765255184676885126
Offset: 0
Examples
The first two terms of the product give 18 correct decimal places of sqrt(2): (1 + 2*6/29)*(1 + 2*6726/45232349) = 1.41421 35623 73095 048(5...).
Links
- Amiram Eldar, Table of n, a(n) for n = 0..4
Programs
-
Mathematica
RecurrenceTable[{a[n+1] == a[n]^5 - 5*a[n]^3 + 5*a[n], a[0] == 6}, a, {n, 0, 3}] (* Amiram Eldar, Jul 20 2025 *)
Formula
Let tau = 3 + 2*sqrt(2). Then a(n) = tau^(5^n) + 1/tau^(5^n).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 6.
Comments