cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A219011 Denominators in a product expansion for sqrt(5).

Original entry on oeis.org

5, 15005, 792070839820228500005
Offset: 0

Views

Author

Peter Bala, Nov 09 2012

Keywords

Comments

Apart from the initial term same as A145275.
a(3) has 105 digits and a(4) has 523 digits.
The product expansion in question is sqrt(5) = Product_{n >= 0} (1 + 2*A219010(n)/A219011(n)) = (1 + 6/5)*(1 + 246/15005)*(1 + 56287506246/792070839820228500005)*....

Crossrefs

Programs

  • Mathematica
    a[n_] := LucasL[4*5^n] - LucasL[2*5^n] + 1; Array[a, 3, 0] (* Amiram Eldar, Jul 20 2025 *)
  • Maxima
    A219011(n):=fib(5^(n+1))/fib(5^n)$
    makelist(A219011(n),n,0,3);

Formula

a(n) = Fibonacci(5^(n+1))/Fibonacci(5^n).
a(n) = A219010(n)^2 - A219010(n) - 1.
Recurrence equation: a(n+1) = 5/2*(a(n)^4 - a(n)^2)*sqrt(4*a(n) + 5) + a(n)^5 + 15/2*a(n)^4 - 25/2*a(n)^2 + 5 with initial condition a(0) = 5.
a(n) = Lucas(4*5^n) - Lucas(2*5^n) + 1. - Ehren Metcalfe, Jul 29 2017

A219013 Denominators in a product expansion for sqrt(3).

Original entry on oeis.org

11, 523451, 39571031999225940638473470251
Offset: 0

Views

Author

Peter Bala, Nov 09 2012

Keywords

Comments

The product expansion in question is sqrt(3) = Product_{n >= 0} (1 + 2*A219012(n)/A219013(n)) = (1 + 2*4/11)*(1 + 2*724/523451)*(1 + 2*198924689265124/39571031999225940638473470251)*....

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == 5/2*(a[n]^4 - a[n]^2)*Sqrt[4*a[n] + 5] + a[n]^5 + 15/2*a[n]^4 - 25/2*a[n]^2 + 5, a[0] == 11}, a, {n, 0, 3}] (* Amiram Eldar, Jul 20 2025 *)

Formula

Let alpha = 1/2*(sqrt(2) + sqrt(6)) and put f(n) = 1/sqrt(6)*{alpha^n - (-1/alpha)^n}. Then a(n) = f(5^(n+1))/f(5^n).
a(n) = A219012(n)^2 - A219012(n) - 1.
Recurrence equation: a(n+1) = 5/2*(a(n)^4 - a(n)^2)*sqrt(4*a(n) + 5) + a(n)^5 + 15/2*a(n)^4 - 25/2*a(n)^2 + 5 with initial condition a(0) = 11.

A219014 Numerators in a product expansion for sqrt(2).

Original entry on oeis.org

6, 6726, 13765255184676885126
Offset: 0

Views

Author

Peter Bala, Nov 09 2012

Keywords

Comments

a(3) has 96 digits and a(4) has 479 digits.
Iterating the algebraic identity sqrt(1 + 4/x) = (1 + 2*(x + 2)/(x^2 + 3*x + 1)) * sqrt(1 + 4/(x*(x^2 + 5*x + 5)^2)) produces a rapidly converging product expansion sqrt(1 + 4/x) = Product_{n >= 0} (1 + 2*a(n)/b(n)), where a(n) and b(n) are integer sequences when x is a positive integer.
The present case is when x = 4. The denominators b(n) are in A219015. See also A219010 (x = 1) and A219012 (x = 2).

Examples

			The first two terms of the product give 18 correct decimal places of sqrt(2): (1 + 2*6/29)*(1 + 2*6726/45232349) = 1.41421 35623 73095 048(5...).
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == a[n]^5 - 5*a[n]^3 + 5*a[n], a[0] == 6}, a, {n, 0, 3}] (* Amiram Eldar, Jul 20 2025 *)

Formula

Let tau = 3 + 2*sqrt(2). Then a(n) = tau^(5^n) + 1/tau^(5^n).
Recurrence equation: a(n+1) = a(n)^5 - 5*a(n)^3 + 5*a(n) with initial condition a(0) = 6.
Showing 1-3 of 3 results.