A219032 Number of distinct squares as subwords of decimal representation of n-th square.
1, 1, 1, 1, 2, 1, 1, 3, 2, 2, 3, 2, 3, 4, 3, 2, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 3, 4, 4, 2, 4, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 5, 4, 4, 3, 2, 2, 2, 4, 4, 2, 3, 2, 3, 6, 4, 3, 2, 2, 3, 1, 2, 3, 3, 5, 2, 2, 2, 2, 3
Offset: 0
Examples
. n row n in A219031 . ----------------------------- . 20 [0, 4, 40, 400] a(20) = #{0, 4, 400} = 3; . 21 [1, 4, 41, 44, 441] a(21) = #{1, 4, 441} = 3; . 22 [4, 8, 48, 84, 484] a(22) = #{4, 484} = 2; . 23 [2, 5, 9, 29, 52, 529] a(23) = #{9, 529} = 2; . 24 [5, 6, 7, 57, 76, 576] a(24) = #{576} = 1; . 25 [2, 5, 6, 25, 62, 625] a(25) = #{25, 625} = 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a219032 = sum . map a010052 . a219031_row
-
Python
from sympy import integer_nthroot def A219032(n): s = str(n*n) m = len(s) return len(set(filter(lambda x: integer_nthroot(x,2)[1], (int(s[i:j]) for i in range(m) for j in range(i+1,m+1))))) # Chai Wah Wu, Oct 19 2021
Comments