A219120 Triangle, read by rows, where T(n,k) is defined for n>=1, k=1..2*n-1, by a formula analogous to the second-order Eulerian triangle A008517.
1, 1, 1, -1, 1, 5, -2, -2, 1, 1, 15, 13, -19, 3, 3, -1, 1, 37, 128, -26, -74, 46, -4, -4, 1, 1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1, 1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1, 1, 367, 10721, 67541, 98069, -24675, -35027, 22717, -3773, -1673, 1099, -245, 7, 7, -1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1, -1; 1, 5, -2, -2, 1; 1, 15, 13, -19, 3, 3, -1; 1, 37, 128, -26, -74, 46, -4, -4, 1; 1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1; 1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1; 1, 367, 10721, 67541, 98069, -24675, -35027, 22717, -3773, -1673, 1099, -245, 7, 7, -1; 1, 749, 37300, 409170, 1290116, 863168, -590008, -108832, 182806, -65858, 5824, 4228, -1988, 364, -8, -8, 1; ...
Links
- Paul D. Hanna, Rows n = 1..32, flattened.
Programs
-
PARI
{T(n,k)=polcoeff((1-x)^(2*n-1)*sum(j=0,2*n,(j^n)*(j+1)^(j-1)*x^j/j!*exp(-(j+1)*x +O(x^k))),k)} for(n=1,10,for(k=1,2*n-1,print1(T(n,k),", "));print(""))
Comments