A219186
Positive integers n such that 1+(k-2)*U_m(k,1)^2 does not divide n-k for any 3<=k=1, where U(k,1) is a Lucas sequence.
1, 2, 3, 4, 6, 8, 14, 18, 20, 24, 32, 38, 42, 44, 54, 60, 62, 68, 72, 74, 80, 90, 98, 104, 108, 110, 114, 132, 140, 150, 152, 158, 164, 168, 180, 182, 194, 198, 200, 212, 234, 240, 242, 258, 270, 272, 278, 284, 294, 308, 312, 332, 338, 348, 350, 360, 368, 374, 380, 384, 398, 402, 410, 420, 422, 432, 434, 440, 450, 458, 464
Offset: 1
Keywords
Links
- I. Baoulina and F. Luca, On positive integers with a certain nondivisibility property, Annales Mathematicae et Informaticae 35 (2008), pp. 11-19.
Crossrefs
Cf. A164014
Comments