cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219208 Number of distinct products of all parts of all partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 7, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 26, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 23, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2012

Keywords

Comments

a(p) = 1 for p in A000040 (prime numbers).
a(n) = 1 for n in A006037 (weird numbers).
a(n) = 1 for n in A005100 (deficient numbers).
a(n) = 1 for n in A125493 (composite deficient numbers).
a(n) <= 2 for n in A000396 (perfect numbers).
a(n) >= 2 for n > 6 and n in A005835 (semiperfect numbers).

Examples

			a(0) = 1: the empty product.
a(p) = 1 for any prime p: [p]-> p.
a(6) = 1: {[1,2,3], [6]}-> 6.
a(12) = 3, because all 3 partitions of 12 into distinct divisors of 12 have different products: [1,2,3,6]-> 36, [2,4,6]-> 48, [12]-> 12. a(18) = 3: [1,2,6,9]-> 108, [3,6,9]-> 162, [18]-> 18.
a(20) = 2: [1,4,5,10]-> 200, [20]-> 20.
a(28) = 2: [1,2,4,7,14]-> 784, [28]-> 28.
a(36) = 7: [2,3,4,6,9,12]-> 15552, [2,3,4,9,18]-> 3888, [1,2,6,9,18]-> 1944, [3,6,9,18]-> 2916, {[1,2,3,12,18], [6,12,18]}-> 1296, [2,4,12,18]-> 1728, [36]-> 36.
a(84) = 23: 84, 16464, 28224, 49392, 65856, 74088, 84672, 86436, 98784, 127008, 148176, 190512, 254016, 444528, 592704, 889056, 1016064, 1185408, 1382976, 1778112, 2370816, 4148928, 7112448.
		

Crossrefs

Maximal products are in A219209.

Programs

  • Maple
    a:= proc(n) local b, l;
          l:= sort([numtheory[divisors](n)[]]);
          b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
                {b(n, i-1)[], `if`(l[i]>n, {}, map(x-> x*l[i],
                b(n-l[i], i-1)))[]}))
              end; forget(b);
          nops(b(n, nops(l)))
        end:
    seq(a(n), n=0..120);
  • Mathematica
    a[n_] := a[n] = Module[{b, l}, l = Divisors[n]; b[m_, i_] := b[m, i] = If[m == 0, {1}, If[i<1, {}, Union[b[m, i-1], If[l[[i]]>m, {}, (#*l[[i]]&) /@ b[m-l[[i]], i-1]]]]]; Length[b[n, Length[l]]]]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)