A219209 Maximal product of all parts of a partition of n into distinct divisors of n.
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 48, 13, 14, 15, 16, 17, 162, 19, 200, 21, 22, 23, 1152, 25, 26, 27, 784, 29, 1350, 31, 32, 33, 34, 35, 15552, 37, 38, 39, 6400, 41, 2058, 43, 44, 45, 46, 47, 73728, 49, 50, 51, 52, 53, 8748, 55, 25088, 57, 58, 59, 864000
Offset: 0
Keywords
Examples
a(0) = 1: the empty product. a(p) = p for any prime p: [p]-> p. a(12) = 48: [2,4,6]-> 48. a(20) = 200: [1,4,5,10]-> 200. a(24) = 1152: [1,2,3,4,6,8]-> 1152.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a:= proc(n) local b, l; l:= sort([numtheory[divisors](n)[]]); b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, max(b(n, i-1), `if`(l[i]>n, 0, l[i] *b(n-l[i], i-1))))) end; forget(b); b(n, nops(l)) end: seq(a(n), n=0..80);
-
Mathematica
a[n_] := a[n] = Module[{b, l}, l = Divisors[n]; b[m_, i_] := b[m, i] = If[m == 0, 1, If[i<1, 0, Max[b[m, i-1], If[l[[i]]>m, 0, l[[i]]*b[m-l[[i]], i-1] ]]]]; b[n, Length[l]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)