A219222 Numbers that can be expressed as the sum of 2 positive squares but not as the sum of 3 positive squares.
2, 5, 8, 10, 13, 20, 25, 32, 37, 40, 52, 58, 80, 85, 100, 128, 130, 148, 160, 208, 232, 320, 340, 400, 512, 520, 592, 640, 832, 928, 1280, 1360, 1600, 2048, 2080, 2368, 2560, 3328, 3712, 5120, 5440, 6400, 8192, 8320, 9472, 10240, 13312, 14848, 20480, 21760
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..120 (terms <= 10^9)
- P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
Programs
-
Python
limit = 21760 squares_lst = [i*i for i in range(1, int(limit**0.5)+2) if i*i <= limit] squares_set = set(squares_lst) def sum2squares(n): for s in squares_lst: if n - s in squares_set: return True if n - s < 0: return False alst = [] for m in range(2, limit+1): if sum2squares(m): sum3 = False for s in squares_lst: if sum2squares(m - s): sum3 = True; break if m - s < 0: break if not sum3: alst.append(m) print(alst) # Michael S. Branicky, Feb 05 2021
Formula
Empirical g.f.: -x*(2*x^16 +28*x^15 +20*x^14 +33*x^13 +40*x^12 +26*x^11 +32*x^10 +32*x^9 +37*x^8 +32*x^7 +25*x^6 +20*x^5 +13*x^4 +10*x^3 +8*x^2 +5*x +2) / (4*x^9 -1). - Colin Barker, Sep 23 2014
Comments