cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A218576 G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^k)^n) ).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 25, 44, 79, 137, 237, 408, 689, 1162, 1946, 3231, 5342, 8776, 14340, 23326, 37758, 60847, 97670, 156145, 248697, 394719, 624343, 984360, 1547187, 2424581, 3788730, 5904230, 9176723, 14226914, 22002523, 33947526, 52258177, 80268131, 123028407
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2012

Keywords

Comments

Compare to the dual g.f. of A219229:
exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*(1 + x^n)^k) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 25*x^6 + 44*x^7 +...
where
log(A(x)) = x/1*((1+x*(1+x))*(1+x^2*(1+x^2))*(1+x^3*(1+x^3))*...) +
x^2/2*((1+x^2*(1+x)^2)*(1+x^4*(1+x^2)^2)*(1+x^6*(1+x^3)^2)*...) +
x^3/3*((1+x^3*(1+x)^3)*(1+x^6*(1+x^2)^3)*(1+x^9*(1+x^3)^3)*...) +
x^4/4*((1+x^4*(1+x)^4)*(1+x^8*(1+x^2)^4)*(1+x^12*(1+x^3)^4)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 11*x^4/4 + 26*x^5/5 + 39*x^6/6 + 57*x^7/7 + 99*x^8/8 + 142*x^9/9 + 208*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*prod(k=1,n\m,(1+x^(m*k)*(1+x^k+x*O(x^n))^m )))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

Conjecture: a(n) ~ c * d^n, where d = A060006 = 1.3247179572447... is the real root of the equation d*(d^2-1) = 1 and c = 43328430766.390... . - Vaclav Kotesovec, Apr 09 2016

A219230 G.f.: exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*(1 + x^n)^k) ).

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 82, 201, 498, 1214, 2954, 7117, 17115, 40880, 97336, 230699, 545068, 1283150, 3011783, 7047353, 16445814, 38275172, 88859213, 205796476, 475539242, 1096428621, 2522704211, 5792637135, 13275381694, 30367439045, 69341077367, 158059717986, 359688534284
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2012

Keywords

Comments

Compare to the dual g.f. of A218575:
exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*(1 + x^k)^n) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 32*x^5 + 82*x^6 + 201*x^7 +...
where
log(A(x)) = x/(1*(1-x*(1+x))*(1-x^2*(1+x)^2)*(1-x^3*(1+x)^3)*...) +
x^2/(2*(1-x^2*(1+x^2))*(1-x^4*(1+x^2)^2)*(1-x^6*(1+x^2)^3)*...) +
x^3/(3*(1-x^3*(1+x^3))*(1-x^6*(1+x^3)^2)*(1-x^9*(1+x^3)^3)*...) +
x^4/(4*(1-x^4*(1+x^4))*(1-x^8*(1+x^4)^2)*(1-x^12*(1+x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 31*x^4/4 + 81*x^5/5 + 228*x^6/6 + 554*x^7/7 + 1399*x^8/8 + 3313*x^9/9 + 7843*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*prod(k=1, n\m, 1/(1-x^(m*k)*(1+x^m)^k +x*O(x^n))))), n)}
    for(n=0, 40, print1(a(n), ", "))

A219231 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*A(x^n)^k) ).

Original entry on oeis.org

1, 1, 2, 5, 15, 47, 160, 554, 1987, 7243, 26873, 100930, 383412, 1469673, 5679033, 22095308, 86489211, 340360513, 1345814572, 5344184197, 21303295069, 85216434084, 341960332173, 1376212103798, 5553269024152, 22463340663474, 91071265881382, 369996643180885, 1506118767637576
Offset: 0

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

Compare to the dual g.f. G(x) of A218551:
G(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} 1/(1 - x^(n*k)*G(x^k)^n) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 47*x^5 + 160*x^6 + 554*x^7 +...
where
log(A(x)) = x/(1*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)*...) +
x^2/(2*(1-x^2*A(x^2))*(1-x^4*A(x^2)^2)*(1-x^6*A(x^2)^3)*...) +
x^3/(3*(1-x^3*A(x^3))*(1-x^6*A(x^3)^2)*(1-x^9*A(x^3)^3)*...) +
x^4/(4*(1-x^4*A(x^4))*(1-x^8*A(x^4)^2)*(1-x^12*A(x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 39*x^4/4 + 146*x^5/5 + 594*x^6/6 + 2346*x^7/7 + 9543*x^8/8 + 38710*x^9/9 + 158448*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*prod(k=1, n\m+1, 1/(1-x^(m*k)*subst(A, x, x^m +x*O(x^n))^k))))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A219232 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*A(x^n)^k) ).

Original entry on oeis.org

1, 1, 2, 4, 11, 30, 92, 284, 918, 3005, 10043, 33943, 116138, 400862, 1395228, 4889389, 17240482, 61117789, 217709832, 778841527, 2797066886, 10080379573, 36444817306, 132147553180, 480444008087, 1751033068088, 6396352141777, 23414462628460, 85878613308907, 315556155264918
Offset: 0

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

Compare to the dual g.f. G(x) of A218552:
G(x) = exp( Sum_{n>=1} x^n/n * Product_{k>=1} (1 + x^(n*k)*G(x^k)^n) ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 30*x^5 + 92*x^6 + 284*x^7 +...
where
log(A(x)) = x/1*((1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)^3)*...) +
x^2/2*((1+x^2*A(x^2))*(1+x^4*A(x^2)^2)*(1+x^6*A(x^2)^3)*...) +
x^3/3*((1+x^3*A(x^3))*(1+x^6*A(x^3)^2)*(1+x^9*A(x^3)^3)*...) +
x^4/4*((1+x^4*A(x^4))*(1+x^8*A(x^4)^2)*(1+x^12*A(x^4)^3)*...) +...
Explicitly,
log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 27*x^4/4 + 86*x^5/5 + 321*x^6/6 + 1128*x^7/7 + 4163*x^8/8 + 15172*x^9/9 + 56078*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*prod(k=1, n\m+1, 1+x^(m*k)*subst(A, x, x^m +x*O(x^n))^k)))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.