A219234 Coefficient array for the fourth power of Chebyshev's S-polynomials as a function of x^2.
1, 0, 0, 1, 1, -4, 6, -4, 1, 0, 0, 16, -32, 24, -8, 1, 1, -12, 58, -144, 195, -144, 58, -12, 1, 0, 0, 81, -432, 972, -1200, 886, -400, 108, -16, 1, 1, -24, 236, -1228, 3678, -6612, 7490, -5532, 2701, -864, 174, -20, 1, 0, 0, 256, -2560, 11136, -27776, 44176, -47232, 34912, -18048, 6504, -1600, 256, -24, 1
Offset: 0
Examples
The irregular triangle a(n, m) starts: n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 0 0 1 2: 1 -4 6 -4 1 3: 0 0 16 -32 24 -8 1 4: 1 -12 58 -144 195 -144 58 -12 1 5: 0 0 81 -432 972 -1200 886 -400 108 -16 1 6: 1 -24 236 -1228 3678 -6612 7490 -5532 2701 -864 174 -20 1 ... Row n=7: [0, 0, 256, -2560, 11136, -27776, 44176, -47232, 34912, -18048, 6504, -1600, 256, -24, 1]. Row n=8: [1, -40, 660, -5828, 30194, -96780, 203374, -293464, 300231, -222112, 119938, -47244, 13415, -2672, 354, -28, 1]. Row n=1 polynomial p(1,x) = 1*x^2 = S(1,sqrt(x))^4 = (sqrt(x))^4. Row n=2 polynomial p(2,x) = 1 - 4*x + 6*x^2 - 4*x^3 + 1*x^4 = S(2,sqrt(x))^4 = (-1+x)^4.
Formula
a(n, m) = [x^(2*m)] S(n, x)^4, n >= 0, with the monic Chebyshev S-polynomials given in terms of the U-polynomials in a comment above.
The o.g.f. GS4(x, z) := sum((S(n, x)^4)*z^n,n=0..infinity) = ((1+z)/(1-z))*(1 - (2-3*x^2)*z + z^2)/((1-z*(-2+x^2)+z^2)*(1-z*(2-4*x^2+x^4)+z^2)). For the o.g.f. of the row polynomials p(n,x) :=sum(a(n,m)*x^m,m=0..n) take GS4(sqrt(x), z).
The row polynomial p(n, x^2) = Sum_{m=0..2*n} a(n, m)*x^(2*m) = (S(n, x))^4 = (R(4*(n+1), x) - 4*R(2*(n+1), x) + 6)/(x^2 - 4)^2, where R are the monic Chebyshev T polynomials with coefficients given in A127672. For factorizations of the S polynomials see comments on A049310. - Wolfdieter Lang, Apr 09 2018
Comments