cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0.

Original entry on oeis.org

0, 1, 0, 3, 4, 1, 0, 9, 24, 22, 8, 1, 0, 27, 108, 171, 136, 57, 12, 1, 0, 81, 432, 972, 1200, 886, 400, 108, 16, 1, 0, 243, 1620, 4725, 7920, 8430, 5944, 2810, 880, 175, 20, 1, 0, 729, 5832, 20898, 44280, 61695, 59472, 40636, 19824, 6855, 1640, 258, 24, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots.
Row sums gives A001018.

Examples

			The triangle T(n, k) begins:
n\k 0     1      2      3       4       5       6      7        8       9
0:  0     1
1:  0     3      4      1
2:  0     9     24     22       8       1
3:  0    27    108    171     136      57      12       1
4:  0    81    432    972    1200     886     400     108      16       1
		

References

  • V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.

Crossrefs

Row 2: row 5 of A158454.
Row 3: row 2 of A220665.
Row 4: row 5 of A219234.

Programs

  • Mathematica
    row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* Jean-François Alcover, Mar 16 2018 *)
  • Maxima
    g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$
    a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$
    T : []$
    for i:1 thru 11 do
      T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$
    T;
    
  • PARI
    T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k);
    tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 03 2018

Formula

T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n.
T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1).
T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0.
T(n,1) = A000244(n).
T(n,2) = A120908(n).
T(n,n+1) = A069835(n).
T(n,2*n-1) = A139272(n).
T(n,2*n) = A008586(n).
T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1.
G.f.: x/(1 - y*(x^2 + 4*x + 3)).

Extensions

Typo in row 6 corrected by Jean-François Alcover, Mar 16 2018

A219240 Coefficient array for the cube of Chebyshev's S polynomials.

Original entry on oeis.org

1, 0, 0, 0, 1, -1, 0, 3, 0, -3, 0, 1, 0, 0, 0, -8, 0, 12, 0, -6, 0, 1, 1, 0, -9, 0, 30, 0, -45, 0, 30, 0, -9, 0, 1, 0, 0, 0, 27, 0, -108, 0, 171, 0, -136, 0, 57, 0, -12, 0, 1, -1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1, 0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Dec 12 2012

Keywords

Comments

The row lengths sequence is 3*n+1 = A016777(n).
For the coefficient triangle for Chebyshev's S polynomials see A049310.
The o.g.f. for S(n,x)^3, n >= 0, is GS(3;x,z) = (1+z^2+2*z*x)/ ((1+z^2-z*x)*(1+z^2-z*x*(x^2-3))). This is obtained from the de Moivre-Binet formula for S(n,x) and the binomial theorem.
In general the monic integer Chebyshev polynomial tau(n,x):= R(2*n+1,x)/x enters, where R(n,x) = 2*T(n,x/2) with Chebyshev's T polynomial (for R see A127672), and the coefficient triangle for tau is given in A111125 (here for the third power of S only tau(0,x) = 1 and tau(1,x) = x^2 - 3 enter).

Examples

			The array a(n,m) begins:
n\m   0  1  2  3  4    5   6    7  8    9 10  11 12  13 14 15
n=0:  1
n=1:  0  0  0  1
n=2: -1  0  3  0 -3    0   1
n=3:  0  0  0 -8  0   12   0  -6   0    1
n=4:  1  0 -9  0 30    0 -45   0  30    0 -9   0  1
n=5:  0  0  0 27  0 -108   0  171  0 -136  0  57  0 -12  0  1
...
Row n=6: [-1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1],
Row n=7: [0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1],
Row n=8: [1, 0, -30, 0, 345, 0, -1921, 0, 5598, 0, -9540, 0, 10212, 0, -7137, 0, 3303, 0, -1003, 0, 192, 0, -21, 0, 1].
n=2: S(2,x)^3 = (x^2 - 1)^3 = -1 + 3*x^2 - 3*x^4 + x^6.
n=3: S(3,x)^3 = (x^3 - 2*x)^3 = -8*x^3 + 12*x^5 - 6*x^7 + x^9.
		

Crossrefs

Cf. A049310, A127672, A158454 (square of S polynomials), A219234 (fourth power of S polynomials).

Formula

a(n,m) = [x^m] S(n, x)^3, n >= 0, 0 <= m <= 3*n, with Chebyshev's S polynomials (see A049310).
a(n,m) = [x^m]([z^n] GS(3;x,z)), with the o.g.f. GS(3;x,z) given above in a comment.
The row polynomials p(n, x) := Sum_{m=0..3*n} a(n,m)*x^m = S(n, x)^3 are (S(3*n+2, x) - 3*S(n, x))/(x^2 - 4). For the factorization of S polynomials see comments on A049310. - Wolfdieter Lang, Apr 09 2018
Showing 1-2 of 2 results.