cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219248 Numbers such that the absolute difference of any two adjacent (decimal) digits is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 16, 18, 20, 24, 25, 27, 29, 30, 31, 35, 36, 38, 41, 42, 46, 47, 49, 50, 52, 53, 57, 58, 61, 63, 64, 68, 69, 70, 72, 74, 75, 79, 81, 83, 85, 86, 92, 94, 96, 97, 130, 131, 135, 136, 138, 141, 142, 146, 147, 149, 161, 163, 164
Offset: 1

Views

Author

M. F. Hasler, Apr 12 2013

Keywords

Comments

Numbers which may (and do) occur in A219250 and A219249 (union {0}).
This is to A219250 and A219249 what A182175 is to A182177 and A182178.

Programs

  • Mathematica
    Select[Range[0,200],And@@PrimeQ[Abs[Differences[IntegerDigits[#]]]]&] (* Harvey P. Dale, Jun 06 2014 *)
  • PARI
    is_A219248(n)={!for(i=2,#n=digits(n),isprime(abs(n[i-1]-n[i]))||return)}
    
  • Python
    def ok(n):
        d = list(map(int, str(n)))
        return all(abs(d[i]-d[i-1]) in {2,3,5,7} for i in range(1, len(d)))
    print([k for k in range(164) if ok(k)]) # Michael S. Branicky, Sep 11 2024
    
  • Python
    from itertools import count, islice
    def A219248gen(seed=None): # generator of terms
        nxt = {None:"123456789", "0":"2357", "1":"3468", "2":"04579",
            "3":"01568", "4":"12679", "5":"02378", "6":"13489",
            "7":"02459", "8":"1356", "9":"2467"}
        def bgen(d, seed=None):
            if d == 0: yield tuple(); return
            yield from ((i,)+t for i in nxt[seed] for t in bgen(d-1, seed=i))
        yield 0
        for d in count(1):
            yield from (int("".join(t)) for t in bgen(d, seed=seed))
    print(list(islice(A219248gen(), 65))) # Michael S. Branicky, Sep 11 2024