A219261 G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n*A(x^n)/n * Product_{k>=1} (1 + x^(n*k)*A(x^n)^k) ).
1, 1, 3, 9, 33, 124, 503, 2089, 8960, 39142, 173978, 783347, 3567123, 16395199, 75966835, 354447193, 1663921966, 7853325055, 37244059607, 177388171005, 848148206917, 4069483589180, 19588001935380, 94559416543623, 457697632011720, 2220852281129195, 10800560004895426
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 33*x^4 + 124*x^5 + 503*x^6 + 2089*x^7 +... where log(A(x)) = x*A(x)/1*((1+x*A(x))*(1+x^2*A(x)^2)*(1+x^3*A(x)^3)*...) + x^2*A(x^2)/2*((1+x^2*A(x^2))*(1+x^4*A(x^2)^2)*(1+x^6*A(x^2)^3)*...) + x^3*A(x^3)/3*((1+x^3*A(x^3))*(1+x^6*A(x^3)^2)*(1+x^9*A(x^3)^3)*...) + x^4*A(x^4)/4*((1+x^4*A(x^4))*(1+x^8*A(x^4)^2)*(1+x^12*A(x^4)^3)*...) +... Explicitly, log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 89*x^4/4 + 396*x^5/5 + 1895*x^6/6 + 8989*x^7/7 + 43545*x^8/8 + 211645*x^9/9 + 1036560*x^10/10 +...
Programs
-
PARI
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*subst(A, x, x^m +x*O(x^n))/m*prod(k=1, n\m+1, 1+x^(m*k)*subst(A^k, x, x^m +x*O(x^n)))))); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
Comments