cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219266 Logarithmic derivative of the superfactorials (A000178).

Original entry on oeis.org

1, 3, 31, 1103, 171311, 149089887, 877704854447, 40451674467223423, 16514355739866259408591, 66586047491662065505372477983, 2923692867015618804999172694908629103, 1527767556403309713534536695030930443376591295, 10306227067090276816548435451550663056418226402352755215
Offset: 1

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

Superfactorial A000178(n) equals the product of first n factorials.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 31*x^3/3 + 1103*x^4/4 + 171311*x^5/5 +...
where
exp(L(x)) = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + 125411328000*x^7 +...+ n!*(n-1)!*(n-2)!*...*3!*2!*1!*0!**x^n +...
		

Crossrefs

Programs

  • Mathematica
    nmax=15; Rest[CoefficientList[Series[Log[Sum[BarnesG[k+2]*x^k,{k,0,nmax}]],{x,0,nmax}],x] * Range[0,nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n+1,prod(j=0,k,j!)*x^k)+x*O(x^n)),n)}
    for(n=1,21,print1(a(n),", "))

Formula

a(n) ~ n^(n^2/2 + n + 17/12) * (2*Pi)^((n+1)/2) / (A * exp(3*n^2/4 + n - 1/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015