cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219267 Logarithmic derivative of the hyperfactorials (A002109).

Original entry on oeis.org

1, 7, 313, 110143, 431860201, 24185951471887, 23238336572015738041, 445571476975584446962639039, 194201470505208674769594891331807753, 2157794122078406207016487628429579826176795887, 677208230450612019931822374477208301572175793625037599321
Offset: 1

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

Hyperfactorial A002109(n) = Product_{k=0..n} k^k.

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 313*x^3/3 + 110143*x^4/4 + 431860201*x^5/5 +...
where
exp(L(x)) = 1 + x + 4*x^2 + 108*x^3 + 27648*x^4 + 86400000*x^5 + 4031078400000*x^6 +...+ n^n*(n-1)^(n-1)*(n-2)^(n-2)*...*3^3*2^2*1^1*0^0**x^n +...
		

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

Crossrefs

Programs

  • Mathematica
    nmax=15; Rest[CoefficientList[Series[Log[Sum[Product[j^j,{j,1,k}]*x^k,{k,0,nmax}]],{x,0,nmax}],x] * Range[0,nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n+1,prod(j=0,k,j^j)*x^k)+x*O(x^n)),n)}
    for(n=1,21,print1(a(n),", "))

Formula

a(n) ~ A * n^(n*(n+1)/2 + 13/12) / exp(n^2/4), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015