A219272 Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
Offset: 0
Examples
A(3,2) = 2: +------+ +------+ | 1 2 | | 1 3 | | 3 .--+ | 2 .--+ +---+ +---+ A(3,3) = 3: +------+ +------+ +---------+ | 1 2 | | 1 3 | | 1 2 3 | | 3 .--+ | 2 .--+ +---------+ +---+ +---+ Triangle A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... . 1, 1, 1, 1, 1, 1, 1, 1, ... . 1, 1, 1, 1, 1, 1, 1, ... . 2, 3, 3, 3, 3, 3, 3, ... . 3, 4, 4, 4, 4, 4, ... . 5, 9, 10, 10, 10, 10, ... . 16, 25, 30, 31, 31, 31, ... . 49, 63, 69, 70, 70, ... . 70, 162, 182, 189, 190, ...
Links
- Alois P. Heinz, Columns k = 0..22, flattened
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=i*(i+1)/2; `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i])))) end: A:= (n, k)-> g(n, k, []): seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
-
Mathematica
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]]; A[n_, k_] := g[n, k, {}]; Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
Formula
T(n,k) = Sum_{i=0..k} A219274(n,i).
Comments