A219275 Number of standard Young tableaux for partitions of nonnegative integers into distinct parts with largest part n.
1, 1, 3, 25, 1069, 368168, 1299366501, 55208013380403, 32401197537296758130, 297072961835477978342245712, 47538199827835784548062928051198402, 146779873623344672821145371965795071455181183, 9581411392319396646028223743176779937161862866453789852
Offset: 0
Keywords
Examples
a(2) = 3: +------+ +------+ +------+ | 1 2 | | 1 3 | | 1 2 | | 3 .--+ | 2 .--+ +------+ +---+ +---+
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..22
- Wikipedia, Young tableau
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: b:= (n, l)-> `if`(n<1, h(l), b(n-1, l) +b(n-1, [l[], n])): a:= n-> `if`(n=0, 1, b(n-1, [n])): seq(a(n), n=0..12);
-
Mathematica
h[l_] := With[{n = Length[l]}, Total[l]!/Product[ Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; b[n_, l_] := If[n < 1, h[l], b[n - 1, l] + b[n - 1, Append[l, n]]]; a[n_] := If[n == 0, 1, b[n - 1, {n}]]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 02 2022, after Alois P. Heinz *)