A219280 Smallest prime of the form ChebyshevT[2^n, x].
2, 7, 97, 665857, 708158977, 150038171394905030432003281854339710977
Offset: 0
Keywords
Examples
T(1, x) = x => a(0) = T(1,2) = 2 ; T(2, x) = 2x^2 - 1 => a(1) = T(2, 2) = 7 ; T(4, x) = 8x^4 - 8x^2 + 1 => a(2) = T(4,2) = 97.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946), 187-203.
Programs
-
Mathematica
Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; ChebyshevT[2^n,k], {n, 0, 7}]
Comments