cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219280 Smallest prime of the form ChebyshevT[2^n, x].

Original entry on oeis.org

2, 7, 97, 665857, 708158977, 150038171394905030432003281854339710977
Offset: 0

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[2^n, x] is the 2^n th Chebyshev polynomial of the first kind evaluated at x.
The corresponding numbers x are {2, 2, 2, 3, 2, 8, 164, 29, ...}.
a(7) = T(128, 29) = 2518958009…2561281 contains 226 decimal digits.

Examples

			T(1, x) = x => a(0) = T(1,2) = 2 ;
T(2, x) = 2x^2 - 1 => a(1) = T(2, 2) = 7 ;
T(4, x) = 8x^4 - 8x^2 + 1 => a(2) = T(4,2) = 97.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946), 187-203.

Crossrefs

Programs

  • Mathematica
    Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; ChebyshevT[2^n,k], {n, 0, 7}]