A219313 Smallest number k such that LegendreP[2*n, k] is prime.
3, 7, 7, 3, 41, 5, 89, 23, 21, 35, 55, 5, 181, 511, 241, 83, 709, 401, 3653, 901, 137, 497, 1411, 121, 281, 209, 201, 191, 1667, 89, 39, 181, 233, 2783, 85, 911, 1717, 919, 97, 1163, 1319, 971, 361, 2371, 1573, 121, 817, 733, 1657, 1895, 509, 431, 2399, 1483
Offset: 1
Keywords
Examples
a(1) = 3 because LegendreP[2*1, x] = (3x^2 - 1)/2 = P(x) and P(3) = 13 is prime.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
Links
- Robert Israel, Table of n, a(n) for n = 1..342
- Eric Weisstein's World of Mathematics, Legendre Polynomial
Crossrefs
Cf. A219315.
Programs
-
Maple
f:= proc(n) local p,k,x; p:= unapply(orthopoly[P](2*n,x),x); for k from 1 by 2 do if isprime(p(k)) then return k fi od end proc: map(f, [$1..60]); # Robert Israel, Dec 26 2024
-
Mathematica
Table[k = 0; While[!PrimeQ[LegendreP [2*n,k]], k++]; k, {n, 70}]
-
PARI
a(n)=my(P=pollegendre(2*n),k,t); while(denominator(t=subst(P,'x,k++))>1 || !ispseudoprime(t), ); k \\ Charles R Greathouse IV, Mar 18 2017
Comments