cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219331 L.g.f.: -log(1 - Sum_{n>=1} x^(n^2)) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 8, 13, 28, 36, 45, 59, 92, 134, 186, 269, 375, 538, 761, 1080, 1520, 2157, 3060, 4339, 6181, 8750, 12394, 17554, 24912, 35322, 50066, 70957, 100596, 142665, 202278, 286790, 406520, 576347, 817142, 1158528, 1642461, 2328536, 3301283, 4680417, 6635688
Offset: 1

Views

Author

Paul D. Hanna, Apr 12 2013

Keywords

Comments

Limit a(n)/a(n+1) = 0.705346681379806989636379706393941505260078161512292870... is a real root of 1 = Sum_{n>=1} x^(n^2).

Examples

			L.g.f.: L(x) = x + x^2/2 + x^3/3 + 5*x^4/4 + 6*x^5/5 + 7*x^6/6 + 8*x^7/7 + 13*x^8/8 + 28*x^9/9 + 36*x^10/10 +...
where
exp(L(x)) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 11*x^9 + 16*x^10 + 22*x^11 + 30*x^12 +...+ A006456(n)*x^n +...
exp(-L(x)) = 1 - x - x^4 - x^9 - x^16 - x^25 - x^36 +...+ -x^(n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n*polcoeff(-log(1-sum(r=1,sqrtint(n+1),x^(r^2)+x*O(x^n))),n)}
    for(n=1,50,print1(a(n),", "))

Formula

Logarithmic derivative of A006456, where A006456(n) is the number of compositions of n into sums of squares.