A219339 Number of standard Young tableaux for partitions of n into distinct parts with largest part floor(sqrt(2*n)+1/2).
1, 1, 1, 2, 3, 5, 16, 49, 70, 168, 768, 3300, 7887, 15015, 48048, 292864, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 9732668946, 32773404950, 97848532782, 344699731090, 1020872973120, 5091106775040, 48608795688960, 586393249199550
Offset: 0
Keywords
Examples
For n=5, we have floor(sqrt(2*n)+1/2) = 3, and a(5) = 5, because there are 5 standard Young tableaux for partitions of 5 into distinct parts with largest part 3: +---------+ +---------+ +---------+ +---------+ +---------+ | 1 2 3 | | 1 2 4 | | 1 2 5 | | 1 3 4 | | 1 3 5 | | 4 5 .--+ | 3 5 .--+ | 3 4 .--+ | 2 5 .--+ | 2 4 .--+ +------+ +------+ +------+ +------+ +------+
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Wikipedia, Young tableau
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=i*(i+1)/2; `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i])))) end: a:= n-> g(n, floor(sqrt(2*n)+1/2), []): seq(a(n), n=0..30);
-
Mathematica
h[l_] := (n = Length[l]; Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]); g[n_, i_, l_] := g[n, i, l] = (s = i*(i+1)/2; If[n==s, h[Join[l, Table[i-j, {j, 0, i-1}]] ], If[n>s, 0, g[n, i-1, l]+If[i>n, 0, g[n-i, i-1, Append[l, i]]]]] ); a[n_] := g[n, Floor[Sqrt[2*n]+1/2], {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)
Comments