cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219339 Number of standard Young tableaux for partitions of n into distinct parts with largest part floor(sqrt(2*n)+1/2).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 16, 49, 70, 168, 768, 3300, 7887, 15015, 48048, 292864, 1946516, 4934930, 14454726, 34918884, 141892608, 1100742656, 9732668946, 32773404950, 97848532782, 344699731090, 1020872973120, 5091106775040, 48608795688960, 586393249199550
Offset: 0

Views

Author

Alois P. Heinz, Nov 18 2012

Keywords

Comments

a(n) is the leftmost nonzero element in row n of A219272, A219274.
Floor(sqrt(2*n)+1/2) = A002024(n) for n>0. There are no partitions of n into distinct parts with a smaller largest part.

Examples

			For n=5, we have floor(sqrt(2*n)+1/2) = 3, and a(5) = 5, because there are 5 standard Young tableaux for partitions of 5 into distinct parts with largest part 3:
+---------+  +---------+  +---------+  +---------+  +---------+
| 1  2  3 |  | 1  2  4 |  | 1  2  5 |  | 1  3  4 |  | 1  3  5 |
| 4  5 .--+  | 3  5 .--+  | 3  4 .--+  | 2  5 .--+  | 2  4 .--+
+------+     +------+     +------+     +------+     +------+
		

Crossrefs

Cf. A005118 (subsequence), A219347.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) local s; s:=i*(i+1)/2;
          `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
           g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
        end:
    a:= n-> g(n, floor(sqrt(2*n)+1/2), []):
    seq(a(n), n=0..30);
  • Mathematica
    h[l_] := (n = Length[l]; Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]); g[n_, i_, l_] := g[n, i, l] = (s = i*(i+1)/2; If[n==s, h[Join[l, Table[i-j, {j, 0, i-1}]] ], If[n>s, 0, g[n, i-1, l]+If[i>n, 0, g[n-i, i-1, Append[l, i]]]]] ); a[n_] := g[n, Floor[Sqrt[2*n]+1/2], {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)

Formula

a(n) = A219272(n,floor(sqrt(2*n)+1/2)) = A219274(n,floor(sqrt(2*n)+1/2)).