A219347 Number of partitions of n into distinct parts with smallest possible largest part.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 5, 4, 3, 2, 2, 1, 1, 1, 6, 5, 4, 3, 2, 2, 1, 1, 1, 8, 6, 5, 4, 3, 2, 2, 1, 1, 1, 10, 8, 6, 5, 4, 3, 2, 2, 1, 1, 1, 12, 10, 8, 6, 5, 4, 3, 2, 2, 1, 1, 1, 15, 12, 10, 8, 6, 5
Offset: 0
Examples
a(0) = 1: []. a(7) = 2: [4,2,1], [4,3]. a(16) = 3: [6,4,3,2,1], [6,5,3,2], [6,5,4,1]. a(22) = 4: [7,5,4,3,2,1], [7,6,4,3,2], [7,6,5,3,1], [7,6,5,4].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
g:= proc(n, i) option remember; local s; s:=i*(i+1)/2; `if`(n=s, 1, `if`(n>s, 0, g(n, i-1)+ `if`(i>n, 0, g(n-i, i-1)))) end: a:= n-> g(n, floor(sqrt(2*n)+1/2)): seq (a(n), n=0..120);
-
Mathematica
g[n_, i_] := g[n, i] = Module[{s = i(i+1)/2}, If[n == s, 1, If[n > s, 0, g[n, i - 1] + If[i > n, 0, g[n - i, i - 1]]]]]; a[n_] := g[n, Floor[Sqrt[2n] + 1/2]]; a /@ Range[0, 120] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
Comments