A219356 Triangle read by rows: A219274 with rows reversed.
1, 1, 1, 1, 2, 1, 3, 1, 4, 5, 1, 5, 9, 16, 1, 6, 14, 49, 1, 7, 20, 92, 70, 1, 8, 27, 153, 204, 168, 1, 9, 35, 235, 405, 738, 768, 1, 10, 44, 341, 715, 1815, 3300, 1, 11, 54, 474, 1166, 3630, 9460, 7887, 1, 12, 65, 637, 1794, 6578, 21307, 28743, 15015
Offset: 0
Examples
A219274 with rows reversed begins: 1; 1; 1; 1, 2; 1, 3; 1, 4, 5; 1, 5, 9, 16; 1, 6, 14, 49; 1, 7, 20, 92, 70; 1, 8, 27, 153, 204, 168; 1, 9, 35, 235, 405, 738, 768; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) local s; s:=i*(i+1)/2; `if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i])))) end: T:= (n, k)-> `if`(k>n, 0, g(n-k, k-1, [k])): seq(seq(T(n, n-k), k=0..(n-floor(sqrt(2*n)+1/2))), n=0..14);
Comments