A219430 Number of overpartitions of n^2; a(n) = A015128(n^2).
1, 2, 14, 154, 2062, 31066, 504886, 8652402, 154208270, 2832526306, 53287424374, 1022143389578, 19924535352374, 393685747760714, 7869272950148382, 158875743754158098, 3235672769357219854, 66405081412501161442, 1372115409786911859502, 28524372351269271839610
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 14*x^2 + 154*x^3 + 2062*x^4 + 31066*x^5 + 504886*x^6 +... It appears that the logarithmic derivative of the g.f. A(x), A'(x)/A(x) = 2 + 24*x + 386*x^2 + 6832*x^3 + 128442*x^4 + 2505720*x^5 + 50153770*x^6 + 1022997344*x^7 + 21170657906*x^8 +...+ A219431(n+1)*x^n +... is congruent to 2/(1-x^2) mod 4.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..730 (terms 0..180 from Paul D. Hanna)
- J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions
- M. D. Hirschhorn and J. A. Sellers, AN INFINITE FAMILY OF OVERPARTITION CONGRUENCES MODULO 12
Programs
-
Mathematica
Table[Sum[PartitionsP[n^2-k]*PartitionsQ[k], {k, 0, n^2}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 28 2015 *)
-
PARI
/* Formula: a(n) = [x^(n^2)] 1 / theta_4(x) */ {a(n)=polcoeff(1/(1+2*sum(k=1,n,(-x)^(k^2))+x*O(x^(n^2))),n^2)} for(n=0,20,print1(a(n),", "))
-
PARI
/* Formula: a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) */ {A015128(n)=polcoeff(1/(1+2*sum(k=1, sqrtint(n+1), (-x)^(k^2))+x*O(x^(n))), n)} {a(n)=if(n==0,1,-2*sum(k=1, n, (-1)^k*A015128(n^2-k^2)))} for(n=0, 25, print1(a(n), ", "))
Formula
a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) for n>0 with a(0)=1.
a(n) = [x^(n^2)] 1 / ( Sum_{m=-inf..inf} (-x)^(m^2) ).
a(n) = [x^(n^2)] 1 / theta_4(x).
a(n) = [x^(n^2)] eta(x^2) / eta(x)^2.
a(n) = [x^(n^2)] Product_{m>=1} (1 + x^m) / (1 - x^m).
a(n) = [x^(n^2)] Product_{m>=1} 1 / ( (1 - x^(2*m)) * (1 - x^(2*m-1))^2 ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} 2*x^(2*m-1)/(1 - x^(2*m-1))/(2*m-1) ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} (sigma(2*m) - sigma(m)) * x^m/m ).
Comments