cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A219473 Number of 3Xn arrays of the minimum value of corresponding elements and their horizontal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and columns, 0..3 3Xn array.

Original entry on oeis.org

20, 82, 673, 4838, 28159, 143718, 674954, 2941342, 11981143, 45898940, 166443227, 574474013, 1895549798, 6001932167, 18298398284, 53884690148, 153709998598, 425853237243, 1148567805278, 3022012284611, 7771027231688, 19561835095982
Offset: 1

Views

Author

R. H. Hardin Nov 20 2012

Keywords

Comments

Row 3 of A219471

Examples

			Some solutions for n=3
..0..0..2....1..1..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..2
..0..0..1....1..1..2....0..0..2....0..1..3....0..0..2....0..2..2....1..1..1
..0..0..1....3..2..3....3..2..2....3..0..0....2..2..2....3..2..2....3..1..1
		

Formula

Empirical: a(n) = (1/523022617466601111760007224100074291200000000)*n^38 + (1/1448816114865931057506945219113779200000000)*n^37 + (1/21256761530851498141028539894333440000000)*n^36 - (757/247995551193267478311999632100556800000000)*n^35 + (4093/17713967942376248450857116578611200000000)*n^34 + (22907/520999057128713189731091664076800000000)*n^33 - (16139/7957076508874892352256672687718400000)*n^32 + (83764319/994634563609361544032084085964800000000)*n^31 + (549239/75761477976110107326205132800000000)*n^30 - (4678856243/7129996871751695656143971942400000000)*n^29 + (1496226007/25756967352797586935167057920000000)*n^28 - (653413544957/386354510291963804027505868800000000)*n^27 - (2975183387963/50709029475820249278610145280000000)*n^26 + (8806918400800111/811344471613123988457762324480000000)*n^25 - (11812904513950811/23181270617517828241650352128000000)*n^24 + (2067239075526283159/270448157204374662819254108160000000)*n^23 + (5489678448341620139/10384231897175311728802529280000000)*n^22 - (392659222400328327701/10384231897175311728802529280000000)*n^21 + (247423891090169051135981/225998646925797238897756864512000000)*n^20 - (1259752365431022645311581/654206609522044638914559344640000000)*n^19 - (2990270427949071173313147319/2570097394550889652878625996800000000)*n^18 + (1113341390309813951403492457/22047404119921847512439193600000000)*n^17 - (27170930857420612653952304299/28976588271897285302062940160000000)*n^16 - (271137930058645412943527770259/72441470679743213255157350400000000)*n^15 + (535219246244278434476862762431287/760635442137303739179152179200000000)*n^14 - (465297657459368886898913689163269/23769857566790741849348505600000000)*n^13 + (2384764688539478823620118815171/8980347604926844618407936000000)*n^12 - (1530415339594431692136387618041231/1920796571053797321159475200000000)*n^11 - (1852126074867674150037947762929883/51672635028348907526553600000000)*n^10 + (3777985100569138597814021070434363/6140112495652570801766400000000)*n^9 - (18055084608276660939474085529912310323/8793869116273611902289838080000000)*n^8 - (16027148120397118317452245023651668567/229007008236291976622131200000000)*n^7 + (146244839212731141496087089326560146347/111231975429056102930749440000000)*n^6 - (2021853520308780547462644486264447863/173027517334087271225610240000)*n^5 + (1473180274572635724831497308125294809/24718216762012467317944320000)*n^4 - (1282315843815358503748361492528617/8174013479501477287680000)*n^3 + (79251015920672692584467011831459/1243794691794272409792000)*n^2 + (221377469245024941019907/356195430470880)*n - 919752513 for n>16